Effects of conceptus sex and genetics on circulating TH and IGF in heifers at mid gestation depend on maternal genetic background

S. Hiendleder^{1,2}, E. Shuaib^{1,2}, J. Owens^{2,3}, D. Kennaway^{2,3}, K. Gatford^{2,3}, K. Kind^{1,2}

¹Davies Research Centre, School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Australia; stefan.hiendleder@adelaide.edu.au, ²Robinson Research Institute, The University of Adelaide, Australia; ³Discipline of Obstetrics and Gynaecology, Adelaide Medical School, The University of Adelaide, Australia

Maternal physiology in pregnancy

- Substantial changes in endocrine milieu and adjustments in carbohydrate, lipid and protein metabolism
- Metabolic adaptations occur in response to hormonal changes associated with fetal nutrient demand and maternal supply essential for fetal growth
- Interindividual variation in metabolic responses to pregnancy has long been recognised
- Environmental or genetic factors?

Evolution, fitness and ideas

- Maternal genome and conceptus genome have shared interests but are also in conflict (Haig 1993, Q Rev Biol 68:495-532)
- Fetal-maternal communication is via the placenta (Haig 1996, J Evol Biol 9:357-380)
- Reprod Dom Anim 38, 276–289 (2003)
 2003 Blackwell Verlag, Berlin ISSN 0936-6768

Embryo-Maternal Communication in Bovine – Strategies for Deciphering a Complex Cross-Talk

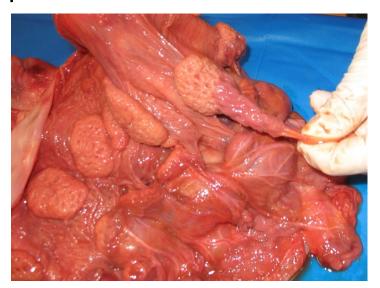
E Wolf¹, GJ Arnold², S Bauersachs¹, HM Beier³, H Blum², R Einspanier⁴, T Fröhlich², A Herrler³, S Hiendleder¹, S Kölle⁵, K Prelle¹, H-D Reichenbach⁶, M Stojkovic¹, H Wenigerkind⁷ and F Sinowatz⁵

¹Institut für Molekulare Tierzucht und ²Laboratorium für Molekulare Biologie, Genzentrum der Ludwig-Maximilians-Universität München, München; ³Institut für Anatomie und Reproduktionsbiologie, Universitätsklinikum der RWTH Aachen, Aachen; ⁴Institut für Physiologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising; ⁵Institut für Tieranatomie, Ludwig-Maximilians-Universität München, München; ⁶Institut für Tierzucht, Bayerische Landesanstalt für Landwirtschaft, Grub and ⁷Bayerisches Forschungszentrum für Fortpflanzungsbiologie (BFZF), Oberschleissheim, Germany

Animal resources and previous work

Embryo-fetal and maternal resource

Bos taurus taurus (Bt)

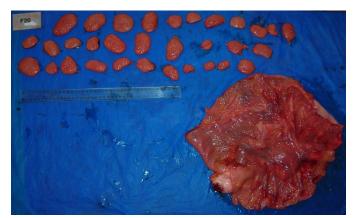


Bos taurus indicus (Bi)

- 16-20 month old heifers, managed as one herd
- Purebred and reciprocal cross concepti (n = 60, 100)
- Concepti, maternal blood at Day 48 and 153 of gestation
- Phenotype including hormone profiles, clinico-chemical screen
- Embryo-fetal growth driven by the conceptus

Role of the placenta

Direct interaction of maternal and conceptus genomes, nutrient provision - extraction

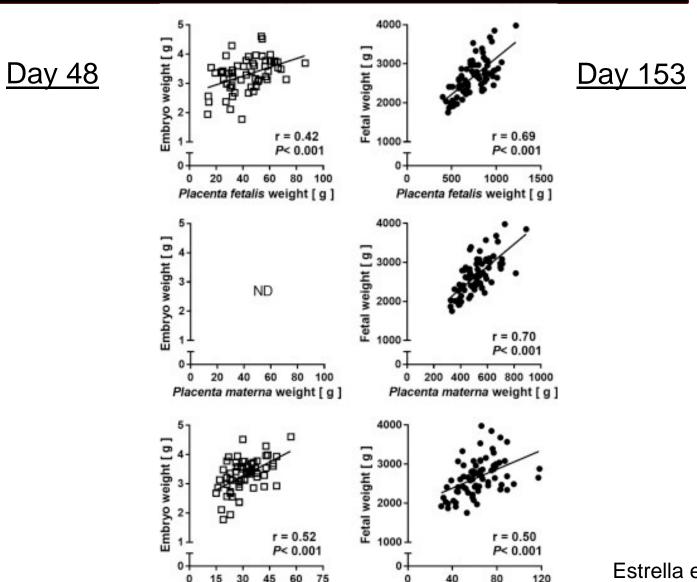


Placenta materna and fetalis in bovine Day 153 pregnancy

- Significant source of hormones such as placental lactogen and prolactin-related proteins, with growth hormone and prolactin like activity (Gootwine 2004, Anim Reprod Sci 82:551-556)
- The placenta drives fetal growth and development, and is a major factor in modifying maternal environment

Significant variation in placental phenotype

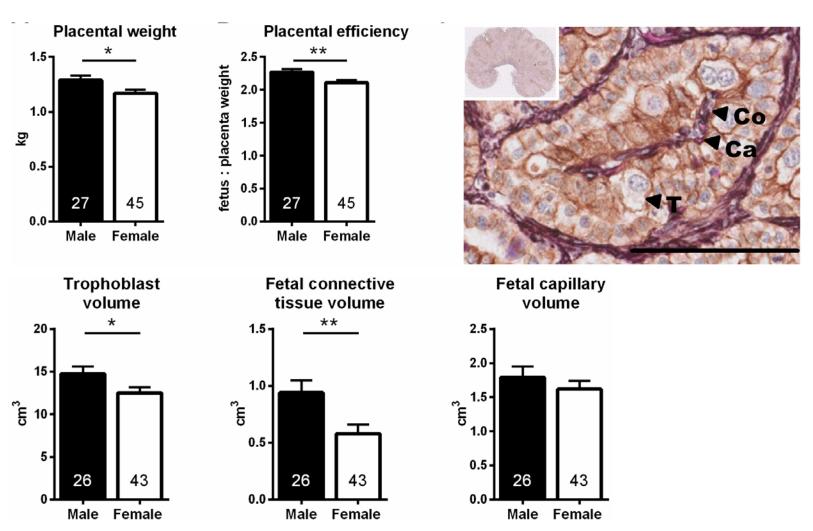
Day 153 resource collection



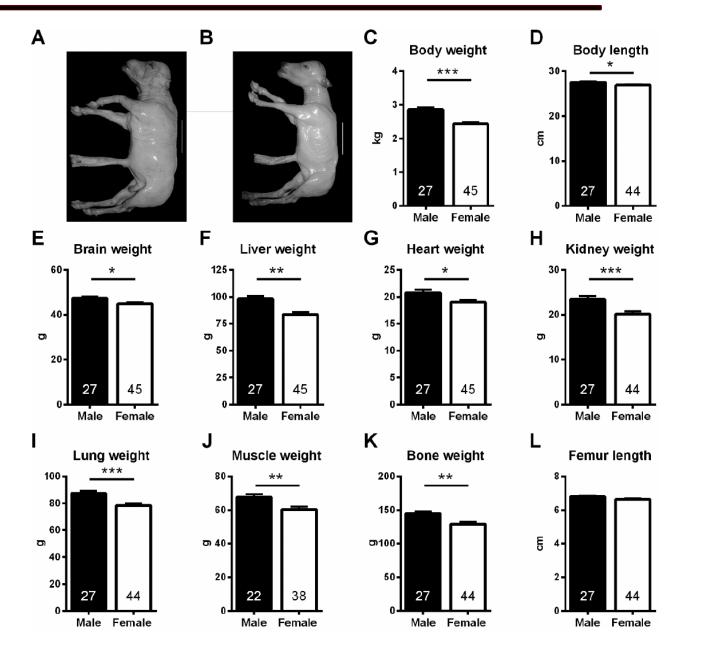
Placenta and embryo-fetal growth

Placentomes in

gravid horn [n]


Placentomes in

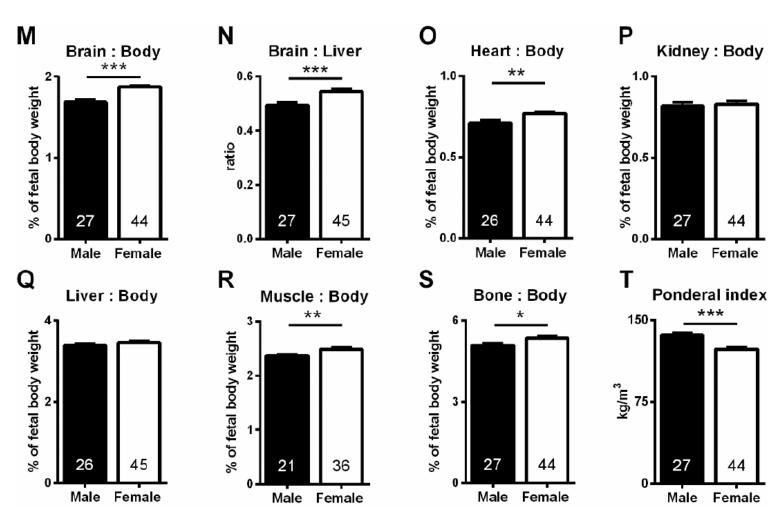
gravid horn [n]


Estrella et al. 2017, Placenta 55:37-46

The placenta is sexually dimorphic

Day 153 of gestation

... as is the fetus



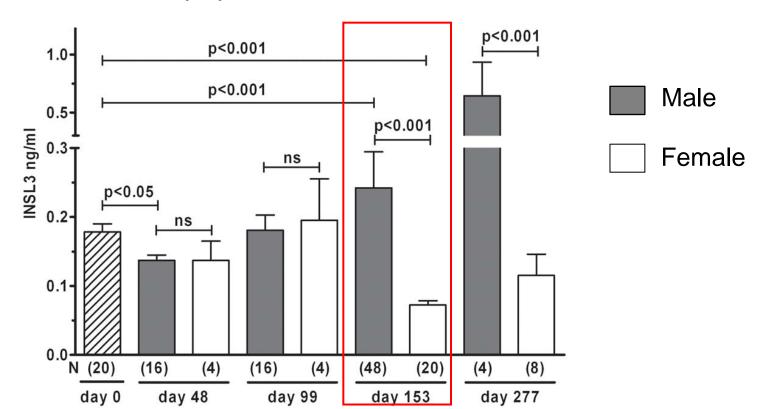
Day 153 of gestation

Estrella et al. 2017, submitted

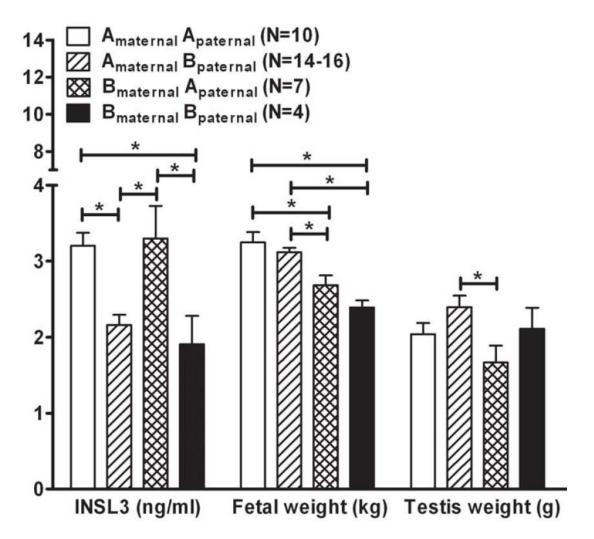
Sex-specific fetal growth strategies

Day 153 of gestation

Estrella et al. 2017, submitted

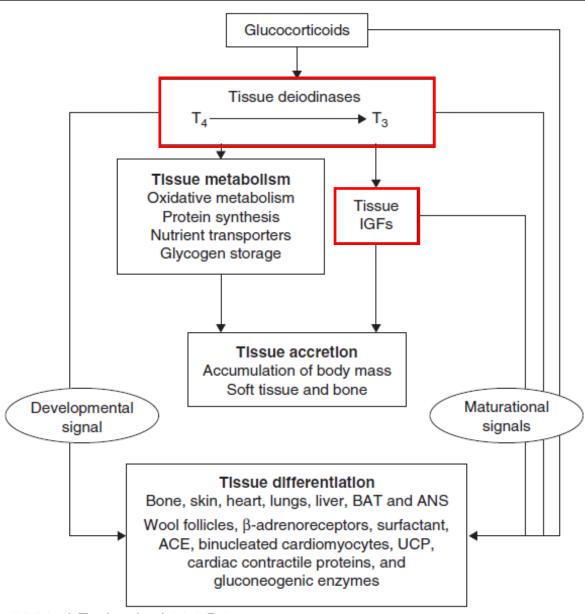


INSL3 in the Ruminant: A Powerful Indicator of Gender- and Genetic-Specific Feto-Maternal Dialogue


Ravinder Anand-Ivell^{1,2,9,a}, Stefan Hiendleder^{3,9}, Carolina Viñoles^{4,a}, Graeme B. Martin⁴, Carolyn Fitzsimmons^{3,a,c}, Andrea Eurich⁵, Bettina Hafen⁵, Richard Ivell^{5,a,a}

1 Sansom Institute, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia, 2 School of Medical Sciences, University of Adelaide, South Australia, Adelaide, Australia, Adelaide, Adelaide, Adelaide, South Australia, Australia, Australia, 4 School of Animal Biology M092, Faculty of Natural and Agricultural Sciences, University of Western Australia, Crawley, Western Australia, Australia, 5 Robinson Institute and School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia

Insulin-like peptide 3 in maternal serum


Genetic differences in fetal INSL3

Anand-Ivell and Hiendleder et al. 2011, PLoS ONE 6(5) e:19821

Thyroid hormones and insulin-like growth factors

THs and IGFs in growth and development

Forhead and Fowden 2014, J Endocrinol 221:R87

TH and IGF assays

- <u>Total thyroxine (T4)</u>, <u>free thyroxine (fT4)</u>, <u>total triiodothyronine (T3)</u> and <u>free triiodothyronine (fT3)</u> assayed using coated tube radioimmunoassay IM 1447, IM 1363, IM 1699 and IM 1579 (Immunotech/Beckman Coulter, Prague, Czech Republic). <u>Reverse triiodothyronine (rT3)</u> assayed using reagents from double antibody radioimmunoassay kit BC 1115 (Biocode-Hycel, Liege, Belgium).
- Insulin-like growth factor 1 and 2 (IGF1, IGF2) and total IGF binding proteins (tIGFBPs) were measured by RIA following separation of IGFs and IGFBPs by size-exclusion HPLC under acidic conditions as described previously. Total IGFBPs obtained here is reflecting the total amount and binding affinity of IGFBPs present in plasma.

(Sullivan et al. 2009, J Anim Sci 87: 3304-3316)

Statistical analyses

 Angus and Brahman dam parameters analysed separately with GLM procedures in SPSS using the model:

$$y_{ij} = Intercept + S_i + C_j + S_i \times C_j + MW + MaxT + MinT + e_{ij}$$

 y_{ii} : Maternal parameter

 S_i : Conceptus sex (i = male, female)

 F_j : Conceptus genetic effect, for Bt dams (j = BtxBt, BixBt) for Bi dams (j = BixBi, BtxBi)

 $S_i \times F_j$: Interaction between conceptus sex and genetics

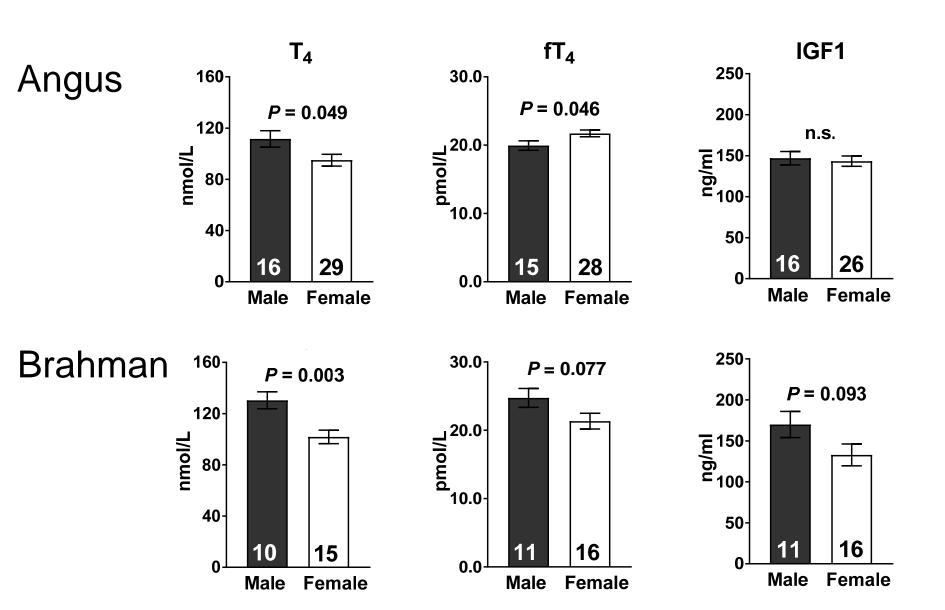
MW: Maternal weight at slaughter

MaxT: Maximum temperature at day of slaughter

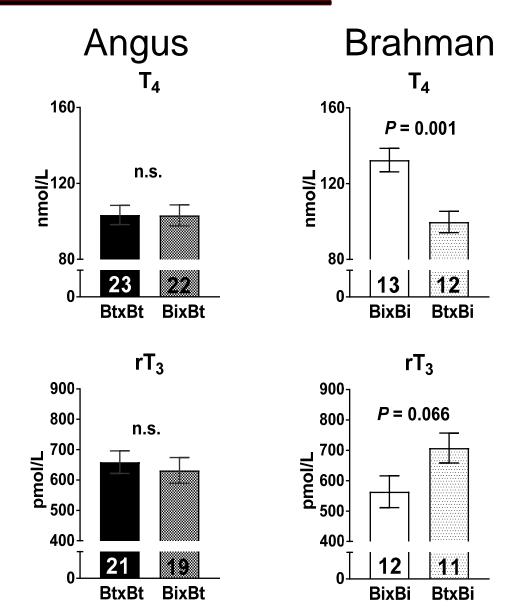
MinT: Minimum temperature at day of slaughter

Effects of conceptus sex and genetics on maternal hormones - Angus

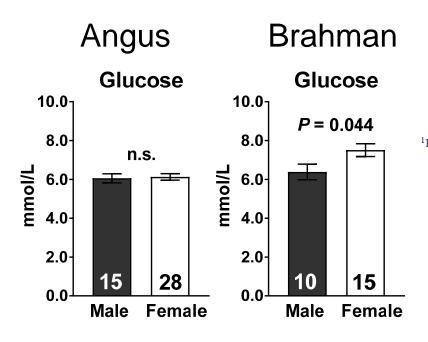
Table 1. R-squared values and significance of linear models, factors and covariates for Bos t. taurus (Angus) maternal circulating hormones at Day 153 of gestation.


	Model			Factors	s	Covariates		
			Fetal genetics	Fetal sex	Genetics × Sex	Maternal weight	Temp. Max.	Temp. Min.
Parameters Hormones	R^2	<i>P</i> -value			P-va	alue ^a		
Insulin-like growth factor 1 (ng/ml)	0.007	0.878	0.795	0.73	4 -	-	-	-
Insulin-like growth factor 2 (ng/ml)b	0.028	0.553	0.648	0.40	5 -	-	-	-
Insulin-like growth factor binding protein (%)	0.220	0.018	0.764	0.71	0 -	-	0.005	-
Free thyroxine (pmol/L)	0.103	0.114	0.274	0.04	6 -	-	-	-
Free triiodothyronine (pmol/L)	0.045	0.395	0.225	0.34	0 -	-	-	-
Reverse triiodothyronine (pmol/L)b	0.007	0.884	0.702	0.83	1 -	-	-	-
Total thyroxine (nmol/L)	0.375	<0.001	0.975	0.04	9 -	-	<0.001	0.011
Total triiodothyronine (nmol/L)	0.140	0.106	0.568	0.71	2 -	-	0.049	-

Effects of conceptus sex and genetics on maternal hormones - Brahman

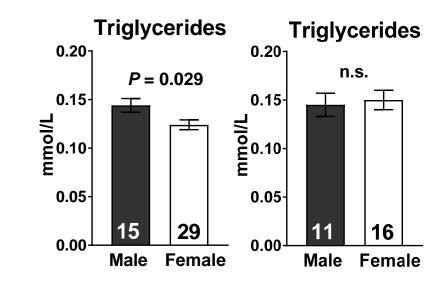

Table 2. R-squared values and significance of linear models, factors and covariates for Bos t. indicus (Brahman) maternal circulating hormones at Day 153 of gestation.

	Model		Factors			Covariates		
			Fetal genetics	Fetal sex	Genetics * Sex	Maternal weight	Temp. Max.	Temp. Min.
Parameters Hormones	R^2 I	P-value			P-v	alueª		
Insulin-like growth factor 1 (ng/ml)	0.230	0.043	0.144	0.09	93 -	-	-	-
Insulin-like growth factor 2 (ng/ml)	0.041	0.607	0.527	0.56	63 -	-	-	-
Insulin-like growth factor binding protein (%)	0.006	0.930	0.712	0.9	79 -	-		-
Free thyroxine (pmol/L)	0.132	0.183	0.989	0.0	77 -	-	-	-
Free triiodothyronine (pmol/L)	0.042	0.608	0.964	0.34	42 -	-		-
Reverse triiodothyronine (pmol/L)	0.374	0.028	0.066	0.94	42 -	-	-	0.019
Total thyroxine (nmol/L)	0.562	<0.001	<0.001	0.00	03 -	0.027	' -	-
Total triiodothyronine (nmol/L)	0.552	0.001	0.527	0.38	37 -	0.027	-	0.001


Magnitude of sex effects on maternal hormones

Magnitude of genetic effects on maternal hormones

Sex effects on metabolites


Sex of offspring influences metabolism during early transition period in dairy cows

D. Alberghina¹, G. Piccione¹, C. Giannetto¹, M. Morgante², and M. Gianesella²

¹Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy
²Department of Animal Medicine, Productions and Health (MAPS), University of Padua, Padua, Italy

Correspondence to: D. Alberghina (dalberghina@unime.it)

Received: 24 October 2014 - Accepted: 23 January 2015 - Published: 4 March 2015

Relevance

Fetal growth, maternal growth, lactation

 Thyroid hormones and insulin-like growth factors affect embryo-fetal growth, postnatal growth and lactation

Canadian Dairy Network

Regulation of Mammary Gland Sensitivity to Thyroid Hormones During the Transition from Pregnancy to Lactation

A. V. CAPUCO, ¹ E. E. CONNOR, AND D. L. WOOD

Bovine Functional Genomics Laboratory, USDA-ARS, Beltsville, Maryland 20705

Holsteins Favor Heifers, Not Bulls: Biased Milk Production Programmed during Pregnancy as a Function of Fetal Sex

Katie Hinde^{1,4,5}*, Abigail J. Carpenter², John S. Clay³, Barry J. Bradford²

The Effect of Calf Gender on Milk Production in Seasonal Calving Cows and Its Impact on Genetic Evaluations

Réseau laitier canadien

Melanie K. Hess^{1,2}*, Andrew S. Hess¹, Dorian J. Garrick^{1,3}

Effect of Calf Gender on Milk Yield and Fatty Acid Content in Holstein Dairy Cows

Amy V. Gillespie¹*, James L. Ehrlich², Dai H. Grove-White¹

Danish Holsteins Favor Bull Offspring: Biased Milk Production as a Function of Fetal Sex, and Calving Difficulty

Kaare Græsbøll¹*, Carsten Kirkeby², Søren Saxmose Nielsen³, Lasse Engbo Christiansen¹

Is Sex-Biased Milk Production a Real Thing?

Conclusions

- The synepitheliochorial bovine placenta enables extensive fetal-maternal communication with significant effects on the maternal endocrine system
- Conceptus sex and genetics impact hormones and clinicalchemical parameters crucial for growth and development, including the mammary gland, but in a dam genetics dependent manner
- Current data may help explain discrepant results for effects of conceptus sex on milk yield

Acknowledgements

- South Australian Research and Development Institute (SARDI)
- Carolyn Fitzsimmons, Zibby Kruk, The University of Adelaide

